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Abstract. In actual industrial manufacturing scenarios, the dynamic behavior of workers is widespread. 

When the production starts for a while, the worker's request for leave and back will break the original 

production rhythm. This paper concentrates on how to reschedule workers in the flow shop under the 

consideration of the workers' dynamic behavior to minimize the total time of workers adjustment and 

production. Inspired by the Self-encoding Barnacle Mating Optimizer (SBMO) to our problem, we design a 

novel solution mode, offspring generation method, and neighborhood search scheme to propose the Three-

stage-encoding Barnacle Mating Algorithm (TBMA). Extensive experiments are conducted to test the 

performance of TBMA, and the results demonstrate that TBMA has competitive performance. 

Keywords: flow shop, three-stage-encoding barnacle mating algorithm, manpower scheduling, dynamic 

behavior. 

1. Introduction 

In reality, the industrial background of the flow shop is extremely strong, which is in line with the 

production characteristics of most shops, such as clothing shops, dyeing & finishing shops, and textile shops. 

In the flow shop, products need to be processed in orderly stages, like woven cloth demands winding, 

warping, sizing, reeding, and weaving. In recent years, the manpower of manufacturing continues to decline, 

leading to a continuous increase in manpower costs [1]. Therefore, it is necessary to solve manpower 

shortages and improve the manpower utilization of the flow shop. 

Some previous studies have addressed the issue of manpower scheduling in the flow shop. Costa et al. [2] 

proposed a novel discrete backtracking search algorithm powered by tabu search to assign workers to operate 

the machines, but they did not consider the workers’ proficiency for each stage. Workers’ proficiency is 

positively correlated with the efficiency of workers operating machines to produce jobs. In real shops, 

workers’ efficiency is sundry, and workers’ assignment considering their proficiency is critical to the 

production process. There are some researches considering workers’ proficiency. Gong et al. [3] presented a 

hybrid evolutionary algorithm to address this problem. Liu et al. [4] formulated this problem into a mixed-

integer linear programming model and adopted the ε-constraint method to solve this model. Matheus et al. [5] 

proposed a new hybrid algorithm based on tabu search and iterated greedy. To tackle this problem, Ebrahim 

et al. [6] established a mixed-integer linear programming model and used CPLEX to obtain the optimal 

solution of the small-scale problems. Moreover, to address the problem on a large scale, they presented a 

hybrid algorithm based on particle swarm optimization and simulated annealing. Han et al.[7] proposed 

seven multi-objective evolutionary algorithms with heuristic decoding to address this problem. Luo et al. [8] 

proposed a novel Self-encoding Barnacle Mating Optimizer (SBMO) to solve the flow shop manpower 

scheduling problem. However, none of the above studies considered the scenario of workers’ dynamic 

behavior. In real life, workers may need to ask for leave for some urgent reasons. Moreover, it is natural 

some workers will come back. These situations will inevitably disrupt the original production rhythm in the 

flow shop. Therefore, it is crucial for production efficiency to restore the original production rhythm as much 

as possible after workers’ dynamic behavior. 
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In this paper, we focus on how to reschedule manpower in the flow shop under the consideration of the 

workers’ dynamic behavior, which is a common phenomenon in a real flow shop. Our target is to fine-tune 

some workers based on the original worker schedule to minimize the completion time of products and the 

time cost of workers’ adjustment. Our research is based on [8], which is not considered the scenario with 

workers’ dynamic behavior. Inspired by the SBMO with outstanding performance, we adopted it to fine-tune 

workers. However, SBMO can not be applied directly to our problem. Therefore, we design a solution mode, 

an offspring generation method, and a neighborhood search scheme based on SBMO and present the Three-

stage-encoding Barnacle Mating Algorithm (TBMA) to fine-tune workers. 

The main contributions of this paper are summarized as follows: 

• For manpower scheduling in the flow shop, we consider the scenario of workers’ dynamic behavior 

and establish a pure integer nonlinear programming model to solve this problem. 

• In order to apply the SBMO to our problem, we design a novel solution mode, offspring generation 

method, and neighborhood search scheme. Based on the above newly designed modules, we propose 

the TBMA. 

• Compared with novel and classical algorithms, the computational results show that the TBMA could 

achieve promising results under the scenarios of workers’ dynamic behavior. 

The remainder of the paper is structured as follows. Section 2 concisely describes the problem and 

establishes the mathematical model. Next, section 3 and 4 declares the basic idea of SBMO and TBMA. 

Furthermore, section 5 analyzes the performance results compared with classical and novel algorithms. At 

last, a conclusion is drawn in section 6. 

2. Problem Description and Mathematical Model 

In this section, the Dynamic Manpower Scheduling Problem (DMSP) is described first. Then, the 

notations and the assumptions are listed. Moreover, the manpower scheduling model considering workers’ 

dynamic behavior and proficiency is described. 

2.1. Problem Description 

Our question is based on the research in [8]. The same D products are processed in N stages, and the 

stage order is fixed from 1 to N. Each stage needs to arrange at least one worker, and there are a total of R 

workers. The workers’ proficiency is diverse, which is quantified to a decimal value between (0,1]. We 

define unit time as the spent time for a worker with a proficiency value of 1 to process a product, which of 

each stage is known at first. 

We suppose that workers have been assigned to reasonable stages, and production has started for a while. 

It is a normal phenomenon that some workers ask for leave or/and come back. If the method in [8] is used to 

rearrange the workers in each stage, it will take extra time cost to the production process. For example, 

workers take a long time to adapt to new stages. Therefore, our goal is to fine-tune workers’ stages to 

minimize the completion time of D products and the time cost of adjusting workers. 

The assumptions of this scheduling problem are as follows: 

• Production is started at zero time. 

• Before workers’ leave, workers need to complete the products they have already processed. 

• Time cost is required for fine-tuning workers. 

In order to express the problem, the following notations are defined: 

i: Index of workers, where i = 1, 2, ... , R; 

j: Index of stages, where j = 1, 2, ... , N; 

tj: The unit time of the jth stage; 

kij: The proficiency of the ith worker to the jth stage; 

rj: The total number of workers arranged to the jth stage; 

rl: The total number of workers who ask for leave; 

rb: The total number of workers who come back; 
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rm (α): The maximum number of fine-tunable workers; 

ra: The number of fine-tuning workers; 

tc: The time cost of adjusting one worker; 

Tc: The total time cost of adjusting workers; 

Tp: The completion time of D products; 

T: The production completion time, which is the sum of Tp and Tc. 

D: The number of products; 

R: The original number of workers before workers’ leaving and return; 

X: The workers’ working status matrix; 

K: The workers’ proficiency matrix. 
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2.2. Manpower scheduling model 
With the notations above, we present the following manpower scheduling model. From assumption (2) in 

section II-A, it can be seen that the completion time calculation formula in [8] can still be used. The worker’s 

work status matrix and the worker’s proficiency matrix are as follows: 
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Take the value on the diagonal of XTK as the sum of the proficiency of all workers in the stage, that is: 
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ij
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processing time of each stage as its processing capacity, i.e., they have a negative relationship. It is noted that 

after adjusting the workers, the matrix X needs to be updated. The completion time is: 
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According to assumption (3) in section II-A, fine-tuning a worker requires time cost tc. Therefore, the 

time cost of fine-tuning ra workers is as follows: 

cac trT =                                                                           (6) 

Therefore, in the scenario where workers have dynamic behavior, the production completion time is 

T=Tc+Tp. 

To sum up, the manpower rescheduling model is as follows: 

pc TTT +=min                                                                       (7) 
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ma rr                                                                            (11) 
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As shown in the Eqs. (7), our optimization goal is to minimize the production completion time T. 

Constraint (8) requires that each worker can only be allocated to one stage; constraint (9) ensures that each 

stage should arrange at least one worker and the number of workers assigned in each stage must be an integer, 

where  =
=

R

i ijj xr
1

; It is noteworthy that tj>0 and D>>N. The above constraints are the same as in [8]. 

Constraint (10) guarantees the total number of workers to be R-rl+rb; constraint (11) restricts the maximum 

number of workers that can be fine-tuned, where )( Rroundrm = . Constraint (12) ensures that after workers’ 

dynamic behavior, the number of remaining workers is not smaller than the number of stages to make sure 

each stage has at least one worker. 

3. The Basic Idea of SBMO 

SBMO is a discrete algorithm and was first developed to address the flow shop manpower scheduling 

problem. The SBMO can be divided into the following modules. 

3.1. Solution Mode 

In SBMO, it is supposed that the candidate solutions are the barnacles where the row vector of the 

population is converting from the matrix X. The number of row vectors is recorded as the corresponding 

positions of 1 for each line of matrix X. The ith number j in the row vector signifies that the ith worker is 

allocated to the jth stage. The length of the row vector is the total number of workers R. Fig. 1 is an example 

of 4 workers and 4 stages. The first number 2 in the row vector P1 means the first worker is assigned to the 

2rd stage. 

 
Fig. 1: One case of solution mode of SBMO. 

3.2. Offspring Generation 

The SBMO generates offspring through crossover and mutation operators. The behavior of crossover and 

mutation depends on the penis length (pl) of the barnacles and the distance between them. Specifically, 

randomly select two barnacles, father and mother. If the distance between them is smaller than or equal to pl, 

they cross; otherwise, the mutation will occur. 

1) Crossover operator: The crossover is the primary behavior to produce offspring, which is designed to 

copy the number of mother and father row vectors, both with 50% probability. 

2) Mutation operators: There are three mutation operators used in the SBMO: inversion mutation, 

insertion mutation, and double-segment swap mutation [8]. 

3.3. Population Update Rules 

After the offspring generation is finished, the new offspring are merged with their parents, and all 

individuals in the current population are sorted from superior to terrible according to the objective function 

of the optimization problem. In order to keep population size stable, the individuals corresponding poor 

solutions will be filtered. The population evolution continues until its stopping criterion is met. 

3.4. Neighborhood Search 

Along with the generation iterations, the updated population tends to be the optimal solution. Hence, the 

filtered solutions tend to have high similarities. The crossover operation fails to generate new offspring, 

making the solution locked into a local optimum. To solve the above problem, a neighborhood search 

algorithm is proposed in SBMO. Expressly, when the feasible solutions tend to be the same, set pl as 0 to 
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block the crossover operator. In order to minutely adjust the solutions in population, replace the above three 

mutation operators with balance mutation, reciprocal exchange mutation, and triplet mutation. 

4. Three-stage-encoding Barnacle Mating Algorithm 

Inspired by the SBMO with outstanding performance, we applied it to fine-tune workers.However, the 

solution mode, offspring generation method, and neighborhood search scheme of the SBMO are not suitable 

for DMSP. Therefore, we design up-to-date modules, and the proposed TBMA is described in algorithm 

flow chart 2. 

 
Fig. 2: Flow chart of the TBMA. 

4.1. Solution Mode 

The solution mode of DMSP is a row vector consisting of three parts, π1, π2, and π3. The length of the 

row vector is 2rm+rb. Fig. 3 is an example of a solution. The length of π1 and π2 is determined by rm, that is, 
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rm workers can be adjusted at most. The length of π3 is decided by rb. π1 indicates which workers are adjusted, 

and the above numbers correspond to the rows of the matrix X. For example, the first number 10 of π1 in Fig. 

3 indicates that the 10th worker will be adjusted, and the work status of this worker corresponds to the 10th 

row of the matrix X. Therefore, the π1 in Fig. 3 represents that the 10th, 5th, 3rd, 8th and 4th workers will be 

adjusted. π1 and π2 correspond one-to-one, indicating which stage the worker is adjusted to. For instance, the 

first number 1 of π2 in Fig. 3 indicates that the 10th worker will be adjusted to the 1st stage. Remarkably, there 

will be the same number in π1. For example, in Fig. 3, there are two numbers 3 in π1, corresponding to 7 and 

5 in π2. In the case of multiple identical numbers in π1, it is considered that the worker has only been adjusted 

once, and he or she is finally adjusted to the stage matches along with the last corresponding number in π2. 

The number of π3 indicates the stages to which the returning workers are assigned. For instance, in Fig. 3, the 

returning workers are assigned to the 8th and 5th stage, respectively. 

 
Fig. 3: One case of solution mode of TBMA. 

4.2. Offspring generation 

In this part, we retain the crossover operator and change the mutation operators in SBMO. 

1) Crossover operator: As is shown by the Fig. 4, the row vector P1 and P2 cross to produce offspring 

C1. The up-to-down arrow means the variable of C1 copies from the one of P1. Conversely, the down-to-up 

arrow represents the variable of C1 copies from P2. Each crossover only generates one offspring. 

2) Mutation operators: According to the three-segment coding method, there are two mutation methods, 

and one of them is randomly selected for each mutation. 

 
Fig. 4: The illustration of crossover operator. 

a) The mutation operators for π1 (Mu1): Two positions are selected randomly within the row vector P1. 

The number in one position is increased by one, and the other is decreased by one, illustrated as Fig. 5. 

b) The mutation operators for π2 and π3 (Mu2): We merge π2 and π3 into one segment to mutate. In order 

to maintain population diversity, we apply three mutation methods, including inversion mutation, insertion 

mutation, and reciprocal exchange mutation. At the inversion mutation, randomly select a segment of π2 and 

π3 and inverse it, as shown in Fig. 6. At the insertion mutation, one variable of π2 and π3 is randomly selected 

and transferred to another position, seen from Fig. 7. At the reciprocal exchange mutation, two variables of 

π2 and π3 are randomly selected and swapped, illustrated as Fig. 8. When the barnacle goes through mutation, 

it will choose one of the above randomly. 

4.3. Neighborhood Search 

With iterations, the solutions in the population have a high degree of resemblance. Almost no new 

offspring will probably be produced through the crossover in this event. Therefore, the crossover operator is 

abandoned by setting pl to 0, and the generation of offspring is mainly through mutation. It is remarkable 
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that we do not change the mutation operators after setting pl to 0 because using the previous mutation 

operators is enough for the population to maintain diversity and the balance mutation operator in [8] is not 

suitable for DMSP. 

 

Fig. 5: The illustration of mutation operator of π1. 

 
Fig. 6: The illustration of inversion mutation of π2 and π3. 

 
Fig. 7: The illustration of insertion mutation of π2 and π3. 

 
Fig. 8: The illustration of reciprocal exchange mutation of π2 and π3. 

5. Experimental Results 

Extensive experiments are designed to certificate the effectiveness of TBMA for DMSP. All experiments 

are executed using Pycharm and run on an 8.0 G RAM 3.20 GHz CPU PC. 

5.1. Algorithms and Parameter Setting 

To analyze the performance of the TBMA, simulation results are compared with novel and classical 

algorithms, Improved Adaptive Genetic Algorithm (IAGA) [9] and Multi-objective Whale Swarm Algorithm 

(MOWSA) [10]. For accuracy, each simulation is repeated 20 times individually, and the average results are 

recorded for comparison. 

The IAGA is a classical algorithm to solve the combinational optimization problem, such as job shop 

scheduling problem, flow shop scheduling problem, and open shop scheduling problem. The MOWSA was 

first proposed to address the multi-objective distributed permutation flow shop scheduling problem, which 

can be applied simply for TBMA by revising the encoding and sorting method of solutions in population. 

The MOWSA was first used to solve multi-objective problems, so it adopted a non-dominated sorting 

method to sort the solutions in the population. However, DMSP is a single-objective optimization problem. 

Therefore, we changed the non-dominated sorting method used in MOWSA to a simple sorting method from 

good to flawed based on the value of objective function. Since the neighbor search algorithm adopted in the 

MOWSA is absorbed in arranging jobs to factories, the scenario is inappropriate for DMSP. So, we execute 
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the MOWSA only without its neighbor search algorithm. To make it fair, all comparison algorithms use the 

same crossover and mutation methods. 

Table 1:  9 comprehensive cases  

Case Number of 

stages 

Number of workers before 

workers’ dynamic behavior 

Number of 

workers ask for leave 

Number of 

returning workers 

Case 1 10 20 2 2 

Case 2 10 20 3 2 

Case 3 10 30 3 0 

Case 4 10 30 4 0 

Case 5 10 40 4 3 

Case 6 10 40 5 3 

Case 7 10 50 5 4 

Case 8 10 50 6 4 

Case 9 10 32 5 0 

The TBMA needs to define three parameters: the population size Q, the number of maximum 

generations G, and pl. Extensive preliminary experiments show that the three parameters have significant 

influence, and the algorithm generally performs well with Q=200, G=300, and pl=170. Hence, we fix these 

values in the following experiments. All the other parameters involved in compared algorithms are referred 

to the settings in their literature. 

5.2. Test Data and Performance Criteria 

To the best of our knowledge, no benchmark instances are available for the considered problem. 

Therefore, we generate 9 synthetic instances. A summary is given in Table 1. In all cases, we set tc=30, 

α=0.2, D=100. 

In this paper, two performance criteria are chosen. They are the value of T and execution time. The value 

of T is calculated by Eqs. (7) according to the changed worker schedule X and the number of adjusted 

workers. The execution time of the algorithm is the total time cost to find the optimal solutions. 

5.3. Evaluation of TBMA 

We compare the performance of the TBMA with IAGA and MOWSA. The comparison is given 

thoroughly from three aspects: T, execution time and convergence performance. 

 
Fig. 9: The comparison results of T values. 

1) Evaluation T value: From Fig. 9, it is observed that the performance of TBMA is the best of all top 8 

cases, no matter the scale of the cases. 

2) Evaluation of computation efficiency: According to literature [8], the time complexity of SBMO, 

IAGA and MOWSA is O(GQR), O(GQR) and O(GQ2R), where R is the total number of workers before 

workers’ dynamic behavior. In literature [8], the code length of the solution is determined by R, but in this 

paper, the code length of the solution is 2rm+rb. Typically, 2rm is greater than rb. Therefore, the time 

complexity of TBMA, IAGA and MOWSA are: O(GQrm), O(GQrm) and O(GQ2rm). 

830



  

 

Fig. 10: The comparison results of execution time. 

As shown in Fig.10, TBMA has the supreme computation efficiency. Although IAGA has the same time 

complexity as TBMA, it has additional tournament selection and elite retention operations. Moreover, the 

execution time increases with the enlargement of rm. Therefore, the simulation results fit the theoretical 

analysis. 

 
Fig. 11: The mean value of T in the population. 

 
Fig. 11: The optimal value of T in the population. 

3) Evaluation of convergence: We use case 9 to compare the convergence performance of the three 

algorithms. As shown in Fig.11 and Fig.12 that all three algorithms can converge. IAGA converges very 

quickly at first, but it is liable to fall into a local optimum. TBMA has a slow convergence speed and 

unsatisfactory results. Overall, TBMA can obtain higher-quality solutions. 

6. Conclusion 

Concentrating on the scenario of workers’ dynamic behavior in the flow shop, we first define a new 

problem, DMSP. To address the DMSP, we modify the solution mode, offspring generation method, and 

neighborhood search scheme of SBMO and propose the TBMA. Finally, the results of experiments denote 

that TBMA is superior to IAGA and MOWSA when solving the DMSP, verifying the effectiveness of 

proposed optimization strategy to improve the solution quality. 
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